3/31/2013


MATEMATICA ISLAMULUI DE AUR, ABU AL WAFA


 

6. Abu al Wafa (Abu Wafa Buzjani) 940-997



                Pe numele său complet Abu Al Wafa Muhammad ibn Muhammad ibn Yahya ibn Isma il ibn al- Al Abbas- Buzjani, matematicianul persan s-a născut în 940 la Buzjani (de aceea mai este recunoscut ca Al Buzjani) în Nishapur, Iran, dar a trăit în Irak. Este cunoscut atât ca astronom cât şi ca matematician.
El a trăit în timpul dinastiei Buyzilor care a avut o perioadă de maximă amploare în timpul domniei lui Ad - Adud Dawlah (949-983). Acesta a fost un mare patron al artelor şi ştiinţelor şi i-a sprijinit pe mulţi matematicieni printre care şi pe Abu Al-Wafa. Sharaf al Dawlah, fiul lui Adud, a devenit calif în 983. El a continuat să sprijine matematica şi astronomia iar Abu al Wafa a rămas la curtea din Bagdad şi a lucrat pentru noul calif. Sharaf a construit un nou observator astronomic în grădina palatului său din Bagdad, care a fost deschis oficial în prezenţa numeroşilor cărturari  precum Al-Quhi şi Abu Al-Wafa. Printre instrumentele observatorului erau un cadran de peste 6 metri şi un sextant de 18 metri, Abu Al-Wafa a construit primul cvadrant de perete pentru observarea şi studierea stelelor (cvadrantul este un instrument astronomic alcătuit dintr-un sfert de cerc şi o lunetă). Dar când peste un an califul a murit, succesorii săi au închis observatorul.
A scris mai multe cărţi  dintre care majoritatea nu mai există: Kitab ‘Ilm al Hisab  (carte de aritmetică), Kitab al Handasiyya (carte de geometrie)şi  Al Kitab al Kamil  (un fel de compendiu, o versiune simplificată a cărţii lui Ptolemeu, Almageste).
Prima dintre ele era o carte de aritmetică pentru cărturari şi oameni de afaceri. În introducere el scria că aceasta cart „cuprinde tot ce trebuie să ştie un novice în aritmetică”.  Este interesant că el şi-a scris textele fără a folosi cifrele, toate numerele fiind scrise în cuvinte şi toate calculele erau făcute mintal, deşi el era un expert în utilizarea cifrelor indiene deja încetăţenite. dar după cum spunea, carte se adresa novicilor în ale matematicii  dar necesară în mediul de afaceri şi trebuia bine înţeleasă. Lucrarea are şapte capitole: despre rapoarte (despre fracţiile ), despre înmulţire şi împărţire, despre măsurarea distanţelor, ariilor şi volumelor, despre impozitare, despre schimbul banilor, despre plata soldaţilor, despre permise de navigare şi de comerţ. Deosebit de interesant este faptul că în această carte apare pentru prima dată noţiunea de număr negativ, în legătură cu „datoriile”, şi de fapt este singurul manuscris arab în care se găsesc referiri la numerele negative.
Kitab al Handasiyya  descrie construcţiile geometrice necesare pentru un meşter constructor. Cartea are 13 capitole şi descrie instrumentele folosite în construcţii, construcţia unghiului drept, trisecţia (aproximativă) a unghiului, construcţia unei parabole prin puncte (ca rezultat al rezolvării ecuaţiilor de forma 
 ,

construcţia unor poligoane regulate (chiar dificila construcţie a heptagonului), poligoane regulate înscrise şi circumscrise, poligoane înscrise în alte poligoane, triunghiuri sferice. El a avut ca preocupare esenţială construcţiile geometrice cu ajutorul riglei negradate şi a compasului. Când acest lucru nu era posibil găsea metode de aproximare foarte bune.
Pentru calculele din astronomie a avut nevoie de valori cât mai exacte ale funcţiilor trigonometrice. Astfel el a alcătuit tabele de valori din 15’ în 15, şi mai mult aceste valori aveau câte opt zecimale exacte faţă de trei câte a dat Ptolemeu.
Pentru a determina aceste valori a avut nevoie de relaţii între diferite funcţii trigonometrice. Astfel el a stabilit şi câteva formule trigonometrice deosebit de importante:
 , 
 a folosit formulele pentru 
.
Totodată el a stabilit definiţiile funcţiilor trigonometrice ca segmente a căror variaţie dădea şi variaţia funcţiilor.


Dacă M este un punct variabil pe cercul trigonometric atunci 

iar

 şi


A stabilit şi o relaţie deosebit de interesantă pe triunghiul sferic:
.

(triunghiul sferic este triunghiul de pe sferă format de intersecţia arcelor cu vârfurile în a, B şi C.
               

 Abu al Wafa a dat o construcţie interesantă a unui triunghi echilateral ale cărui vârfuri se află pe laturile unui pătrat.Se construiesc arcele de cerc cu  centrele în A şi respectiv C şi de raze AC şi respectiv CA. Acestea se taie în E şi F. Mijloacele segmentelor CF şi CE sunt M şi respectiv N în care se ridică perpendiculare pe CF şi CE, care taie laturile pătratului în M1 şi N1. Atunci triunghiul AM1N1 este echilateral (Construcţia nu este unică).


O altă construcţie care-i poartă numele, creată în aceleaşi scopuri practice, se referă la construcţia unui triunghi echilateral înscris în acelaşi cerc în care există un pătrat.

            Evident se poate imediat construi şi hexagonul regulat.  Şi anume, în cercul de centru  O şi rază dată a se duc două diametre perpendiculare care vor determina vârfurile pătratului înscris ANQR. Cu centrul în Q şi aceeaşi rază se trasează al doilea cerc ce îl va intersecta pe primul în punctele B şi C. ABC va fi triunghiul echilateral căutat. Pentru demonstraţii este suficient să se observe că BQCO este un romb (laturi egale şi diametre perpendiculare)  Deci


adică tot atât cât apotema triunghiului echilateral înscris.
Construcţiile geometrice ale lui Abu al-Wafa au  avut un scop precis: ele foloseau în construcţii şi pentru crearea arabescurilor. În Mesquitta del Divendres din Isfaham un motiv atrage atenţia în mai multe locuri de pe faţada sa sau de la boţile porţilor. Ea este inspirată de celebra demonstraţie a teoremei lui Pitagora datorată lui Abu al-Wafa dată în Kitab al Handasiyya.



    








 În semn de omagiu pentru contribuţia sa la dezvoltarea matematicii un crater de pe Lună îi poartă numele iar formula dezvoltării în serie a funcţiei secantă se numeşte formula lui Al-Wafa
  

Niciun comentariu:

Trimiteți un comentariu